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Abstract

Background

Diagnostic errors can occur, in infectious diseases, when anti-microbial immune responses

involve several temporal scales. When responses span from nanosecond to week and

larger temporal scales, any pre-selected temporal scale is likely to miss some (faster or

slower) responses. Hoping to prevent diagnostic errors, a pilot study was conducted to eval-

uate a four-dimensional (4D) method that captures the complexity and dynamics of infec-

tious diseases.

Methods

Leukocyte-microbial-temporal data were explored in canine and human (bacterial and/or

viral) infections, with: (i) a non-structured approach, which measures leukocytes or

microbes in isolation; and (ii) a structured method that assesses numerous combinations of

interacting variables. Four alternatives of the structured method were tested: (i) a noise-

reduction oriented version, which generates a single (one data point-wide) line of observa-

tions; (ii) a version that measures complex, three-dimensional (3D) data interactions; (iii) a

non-numerical version that displays temporal data directionality (arrows that connect pairs

of consecutive observations); and (iv) a full 4D (single line-, complexity-, directionality-

based) version.
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Results

In all studies, the non-structured approach revealed non-interpretable (ambiguous) data:

observations numerically similar expressed different biological conditions, such as recovery

and lack of recovery from infections. Ambiguity was also found when the data were struc-

tured as single lines. In contrast, two or more data subsets were distinguished and ambigu-

ity was avoided when the data were structured as complex, 3D, single lines and, in addition,

temporal data directionality was determined. The 4D method detected, even within one day,

changes in immune profiles that occurred after antibiotics were prescribed.

Conclusions

Infectious disease data may be ambiguous. Four-dimensional methods may prevent ambi-

guity, providing earlier, in vivo, dynamic, complex, and personalized information that facili-

tates both diagnostics and selection or evaluation of anti-microbial therapies.

Introduction
Investigating the properties of infectious disease-related data may improve diagnostics and
research. To that end, four-dimensional (three-dimensional plus temporal) approaches may be
useful. While pursued for many years [1], four-dimensional (4D) methods remain scarce: the
Web of Science™ currently retrieves less than ten hits when ‘four-dimensional analysis’ and
‘infection’ are searched.

Biological complexity is a major set of properties to be investigated. Infectious disease data
may reveal, at least, four properties associated with complexity: (i) emergence, (ii) irreducibility,
(iii) unpredictability, and (iv) autonomy [2–8]. Emergence is the central concept: it refers to the
new features detected when a complex structure is assembled, which are not observed when its
constitutive parts are individually measured [2]. Emergence cannot be reduced to the properties
of any one variable. Unpredictability denotes the inability to anticipate emergence when only
‘simple’ and/or isolated variables are analyzed, e.g., immunoglobulins express emergent prop-
erties, which are neither reducible to first principles nor predictable [3]. Similarly, the emergent
features of three-dimensional (3D) interactions–e, g, those associated with multi-cellularity–
cannot be predicted by bi-dimensional models [4]. Autonomy is characterized by non-linearity:
because causes and effects are not coupled, the effect (emergence) is numerically autonomous
from the cause(s) [2].

Emergencemay reflect hidden relationships: information usually non-observable may
become apparent when the data are shaped as complex structures [9]. While complexity has
been partially investigated in infections affecting non-human species [9, 10], this group of
properties has not yet been explored in humans, including personalized medical practices.

A second set of interesting properties includes ‘one-to-many’/‘many-to-one’ relationships
[11, 12]. Such properties occur when one structure (e.g., a cell type) participates in two or more
functions and also when several structures act in the same function, e.g. (i) monocytes both
promote and destroy neutrophils (‘one-to-many’ interactions) and (ii) both lymphocytes and
monocytes are involved in antigen recognition (‘many-to-one’ interactions [13, 14]).

Spatial-temporal relativity is another property of biological data, not yet assessed in infec-
tious diseases [15]. It refers to data collected over long periods of time, which may occupy a
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small portion of the space (plot) used to analyze the data, while observations collected over
short periods of time–such as recent infections–may occupy a large plot space.

Biological spatial-temporal relativitymay result in non-interpretable (ambiguous) data.
Ambiguity occurs when numerically similar data express different biological conditions [16].

To prevent ambiguity, dynamics (temporal changes) should be investigated. To assess
dynamics, it is necessary to address the fact that, in infections, numerous temporal scales may
co-exist. Because anti-microbial immunity may simultaneously involve responses lasting from
nanosecond to weeks and larger temporal scales [17, 18], any pre-selected temporal scale may
fail to capture all biological changes–at least some processes will be missed.

To avoid information loss, pattern recognition should be considered. When arrows that con-
nect two temporal observations are used (temporal data directionality) and 3D/4D patterns are
assessed, emergence may be detected, even when space is not uniform [19–24].

Pattern recognition of perpendicular data subsets is facilitated by the use of 3D/4D plots.
Perpendicular data subsets reflect non-overlapping data distributions. Such data subsets tend to
differ at statistical levels, regardless of their number of observations.

Methods that detect 3D perpendicular data subsets could address the limitations of the ‘sin-
gle structure/single sequence/single function’ paradigm–which no longer holds [25]. Because
biology is characterized bymuch fewer structures than functions–as shown by the fact that only
five cell types (lymphocytes, monocytes, neutrophils, eosinophils, and basophils) protect
against a much larger number of microbes–, methods that explore data combinations are
needed, which may take advantage of (i) a rather low number of interdependent relationships
[26], (ii)‘one-to-many/many-to one’ relationships (e.g., the fact that no cell type, alone, per-
forms any function, but two or more cell types do [12, 13]); and (iii) the informative value of
emergence. Validity augments when hidden information is unveiled [9, 27, 28].

To validate methods likely influenced by the unpredictability of biological complexity,
numerous comparisons–across individuals, populations, host species and/or microbes–are cru-
cial. When similar patterns are observed across species and pathogens, the likely explanation is
that such patterns are highly conserved and, therefore, reproducible [29–31].

Here, infectious disease data were investigated with two methods: (i) an approach that
assesses cell types in isolation; and (ii) a method that measures immuno-microbial-spatial-tem-
poral data interactions. The goals of this pilot study were (i) to elucidate whether infectious dis-
ease data express ambiguity; and (ii) to determine whether methods that capture complex
dynamics prevent ambiguity and/or extract more information.

Materials and Methods

Longitudinal canine and human leukocyte and microbial data
Three sets of data on human infections were analyzed. The first set included seven septicpati-
ents with no history of chronic non-infectious diseases, who were infected by various bacteria
and met at least three systemic inflammatory response syndrome (SIRS) criteria [32]: body
temperature> 38°C, heart rate> 90 beats/minute, tachypnea or hyperventilation (>20
breaths/minute or PACO2 < 32 mm Hg at sea level), and white blood cell count� 12000
or� 4000/μl. Blood leukocyte percentagess were determined, over three days, since hospital
admission (Table A in S1 File).

Human blood leukocytes were also collected from two non-septic but infected patients
(Tables B, C in S1 File). The first case was a 49-year old man previously diagnosed with human
immunodeficiency virus (HIV), who presented with ~ 1% CD4+ T cells and, over four months,
experienced methicillin-resistant and -sensitive Staphylococcus aureus (MRSA and MSSA,
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respectively) mediated infections. The second case was a 60-year old man that received a hip
implant who, over seven months, had recurrent MSSA infections [33, 34].

To elucidate whether the 4D method could be applied to non-human species, blood leuko-
cytes and bacteriological tests were explored in one dog (Table D in S1 File). Over 9 months,
the animal was spontaneously infected, first, by the opportunistic Enterobacter cloacae [35]
and, later, by Staphylococcus pseudointermedius (a common cause of skin infections [36]).

Laboratory methods
Identification and quantification of human leukocytes (lymphocytes [L], neutrophils [N] and
monocytes [M]) were conducted with an automated hematology analyzer (Coulter LH 780
Analyzer, Beckman Coulter International SA, Nyon, Switzerland). Blood culture was per-
formed with the automated Bactec 9249 instrument (Becton Dickinson, New Jersey, USA).
The pathogens isolated from blood were identified and tested for their antimicrobial suscepti-
bility with the automated microbiology system Phoenix 100 (Becton Dickinson, New Jersey,
USA). Similar techniques were utilized to conduct canine studies in a veterinary hospital.

Methods
These studies were approved by the Scientific Committee of the Thriasio Hospital, Magoula,
Greece (protocol 57/16-02-2015) and the Human Research Review and Institutional Animal
Care and Use (IACUC) committees of the University of New Mexico (protocols numbers 13–
463 and 13-101022-T-HSC). Informed consent was not provided because this study was con-
ceived after patients were discharged or died. Patient records were de-identified prior to
analysis.

To diminish data variability, a single (one data-point wide) line of observations was created–
a structure that eliminates variability from all dimensions except the one defined by the single
line. For example, a bi-dimensional plot that measures, in one axis, the phagocyte/ lymphocyte
ratio (the sum of M and N percents divided over the L percentage) and, in the other axis, the L
%, creates a single line of data points [37].

Three-dimensional (3D) plots were used to extract more information. The addition of depth,
to height and width, may uncover data patterns that uni- or bi-dimensional plots cannot reveal.

To estimate complexity, dimensionless indicators were utilized [9, 10, 38, 39], consisting of
combinations of counts, percentages, ratios, or products derived from primary variables. When
the percents of L, M, and N are used in an equation that includes many interactions (e.g., the
{[M/L � N/M] / [N/L � L/M]) over ([M+L/N] � [L+N/M] / [N+M]/L � [M/N]}), a dimension-
less number is created: the number produced does not describe any known biological structure.

Dimensionless indicators (DI) can capture many levels of complexity. For instance, in the
DI described above, one level of complexity (level I) is estimated by each ratio of the first ele-
ment or ‘numerator’ (M/L, N/M, N/L, and L/M). Two more interactions (of level II complex-
ity) are measured by each product (M/L � N/M, N/L � L/M). Complexity level III is evaluated
by the composite ratio of the numerator ([M/L � N/M] / [N/L � L/M]). Because the second ele-
ment (‘denominator’) has the same structure, the number of interactions doubles when the
denominator is calculated. An additional interaction (complexity level IV) is generated when
the numerator and the denominator are simultaneously analyzed. When three DIs are assessed
in 3D space, the number of interactions increases three times and one more interaction (level
V complexity) is produced when the overall (3D) relationship is plotted. Thus, the example
shown above covers at least (4 x 2 +1 x 2 +1 x 3 +1) 58 interactions and five levels of complexity.

Four-Dimensional (4D) Data Analysis of Infections

PLOS ONE | DOI:10.1371/journal.pone.0159001 July 13, 2016 4 / 19



Furthermore, a sixth level of complexity was considered when dynamics were addressed [18].
Using non-numerical indicators (arrows that connected pairs of consecutive observations), tem-
poral directionality was investigated. Such arrows detected multi-directional data flows.

This design revealed distinct 3D/4D patterns, which distinguished data subsets. The validity
of each subset was determined by analyzing microbial test results and/or leukocyte data.

Data analysis
Because all DIs–except a few indicators (N/L, M/N, M/L, N�L, M�N and M�L)–, included the
same data contents, DI were not described but identified with descriptors written in italics (e.
g., AAR). Because DIs expressed hypothetical interactions, they were not biologically observ-
able and, statistically, they were neither interpretable nor predictable [40]. However, after dis-
tinct spatial patterns (such as perpendicular data inflections) were detected, data subsets were
differentiated and statistical comparisons among subsets were justified. Because differences
among data subsets were based on their immune profiles, validations were biologically
grounded. Dimensionless indicators were generated by a proprietary algorithm [9]. Leukocyte
percents, products, or ratios were compared with the Mann-Whitney test, which tested
whether medians differed across data subsets (Tables E-H in S1 File). Plots and statistical anal-
yses were created or conducted with Minitab 171 (State College, PA, USA). The data described
in the Table I in S1 File can be analyzed statistically with the procedure reported in the footnote
of Table J in S1 File.

Results
The classic method was not predictive: leukocyte data did not separate different clinical presen-
tations, such as infected and non-infected or fever-positive and -negative individuals (blue
boxes, Fig 1a–1d). The analysis of temporal data did not improve discrimination (Fig 1e–1h).

Lack of discrimination was also observed when single (one data point-wide) lines were
investigated within three-dimensional (3D) plots. In all studies, some numerically similar data
points expressed different clinical conditions (ambiguity). Ambiguity was associated with spa-
tial-temporal relativity: data points that corresponded to recent infections occupied more space
and/or exhibited broader data ranges than observations not associated with recent infections
and/or recorded over longer periods (Fig 2a–2d).Multi-directional temporal ambiguity was
also detected: some pairs of consecutive observations displayed similar numerical values but
expressed different temporal directionality (arrows within boxes, Fig 3a–3d).

Discrimination improved when dimensionless indicators (DIs) were utilized. For instance,
three-dimensional (3D) canine patterns revealed two (‘left’ and ‘right’) data subsets (Fig 4a and
4b). The L%, the N/L and M/L ratios of such data subsets did not overlap (Fig 4c).

Arrows with different directionality helped distinguish observations that expressed similar
numerical values. Three data flows were detected in canine responses: (i) a left-to-right flow
(red arrows), (ii) a right-to-left flow (green arrows), and (iii) a vertical, top-down flow (purple
arrow, Fig 4d). Spatial-temporal flows differentiated five subsets from the first data point. Non-
overlapping N/L and M/L ratio values discriminated left-side/right-to-left flow- from left-side/
top-down flow-related observations (horizontal lines, Fig 4e). In addition, non-overlapping M/
N data intervals distinguished right-side/left-to-right- from right-side/right-to-left flow data
points (Fig 4e). When leukocyte profiles were analyzed, at least four comparisons among spa-
tial (3D) or spatial-temporal (4D) subsets reached statistical significance (Table E in S1 File).

Three spatial subsets were identified when the MSSA hip implant human case was explored
with dimensionless indicators (Fig 5a). All data points associated with antibiotic therapy were
clustered within one subset, even though antibiotics were administered in two non-consecutive
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periods (green symbols and green boxes, Fig 5b). Fifteen leukocyte-related comparisons dif-
fered among the three spatial patterns (P�0.04, Fig 5c and Table F in S1 File). Arrows that con-
nected pairs of consecutive observations detected three ‘bottom-up’ and two ‘top-down’
observations (Fig 5d, red and blue arrows, respectively). Four spatial-temporal patterns were
detected (Fig 5e). ‘Vertical/bottom-up’ observations showed statistically significantly higher N/
L values than ‘vertical/top-down’ data points (horizontal line, Fig 5e and Table F in S1 File).
The MSSA case also indicated antibiotic-related effects. Higher M/L values were observed after
the first, but before the second antibiotic treatments (horizontal line, Fig 5f).

Fig 1. Classic analysis of immuno-microbial data. The classic method did not discriminate: leukocyte data
distributions overlapped among different biological conditions, such as fever-positive and fever-negative
individuals or individuals that recovered or did not recover from infections (blue boxes, a-d). The analysis of
temporal data did not improve discrimination (e-h). Four studies were evaluated, including: (i) one dog [a, e],
(ii) one human infected by MSSA [b, f]; (iii) one human HIV case, with a secondary MRSA infection [c, g]),
and (iv) seven humans presenting with sepsis [d, h]).

doi:10.1371/journal.pone.0159001.g001
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Fig 2. Spatial-temporal data ambiguity. Ambiguity (numerically similar observations that expressed
different biological conditions) was also documented when three-dimensional (3D) relationships were
explored and single (one data point-wide) lines of observations were utilized to explore longitudinal data.
Ambiguity exhibited spatial-temporal relativity: data points that corresponded to recent infections occupied
more space and/or exhibited broader data ranges than observations not associated with recent infections

Four-Dimensional (4D) Data Analysis of Infections
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Informative patterns were also observed, in the HIV case, when DIs were analyzed. While
viral load values were not informative (they exhibited more than 1000-fold changes among
clinically stable observations, Fig 6a), data associated with bacterial isolations predominated in
the ‘vertical’ data subset (Fig 6b). A second set of DIs amplified the detection of observations
horizontally displayed (Fig 6c). Combining the patterns displayed by the first set of DIs with
those expressed by the second set, data points were divided into ‘top vertical’ and ‘left horizon-
tal’ observations and, together with ‘right horizontal’ data points, three data subsets were spa-
tially differentiated (Fig 6d). The immune profile of such datasets showed non-overlapping L%
and M/N ratio intervals (Fig 6d). Temporal flows distinguished data points that displayed simi-
lar numerical values but differed in directionality (days 118–119; and 135–136; arrows, boxes,
Fig 6e and 6f). While the spatial (3D) analysis detected three data subsets, the spatial-temporal
(4D) assessment differentiated five subsets and exhibited non-overlapping L %, M %, M/N,
and N/L distributions (Fig 6g). Seven comparisons among subsets detected by either 3D or 4D
patterns reached statistically significant differences (Table G in S1 File).

Long-term antibiotic-related immune responses were also suggested in the HIV case.
Higher M/L values were observed, even after cessation of antibiotic therapy (boxes, Fig 6h).

When dimensionless indicators were used to evaluate septic patients, three (‘left’, ‘vertical’,
and ‘right’) subsets were detected (Fig 7a). The L% and the N/L ratio differentiated the ‘left’
from the remaining subsets, while M% values distinguished the ‘vertical’ from the ‘right’ subset
(Fig 7b). Different temporal data flows were exhibited by several data points that expressed
similar numerical values, which discriminated eight spatial-temporal patterns (Fig 7c and 7d).
While several of such subsets only included one or two data point(s) (so, no statistical test
could be conducted), spatial-temporal patterns prevented ambiguity; for instance, ‘right side/
left-to-right’ and ‘bottom/right-to-left’ observations were differentiated from ‘right side/right-
to-left’ and ‘bottom/left-to-right’ data points, respectively (Fig 7d).

Discrimination was also achieved when leukocyte-explicit, low-complexity–not dimension-
less–indicators were utilized. Two non-randomly distributed (perpendicular) data subsets were
detected when the phagocyte/lymphocyte (P/L), the mononuclear cell/neutrophil (MC/N), and
the neutrophil/lymphocyte (N/L) ratios were evaluated in septic patients (Fig 8a). When obser-
vations were classified according to the observed spatial patterns, eight between-subset com-
parisons differed statistically (Fig 8b; Tables I, J in S1 File).

Spatial-temporal information also supported personalized assessments, even when low-
complexity interactions were measured. Based on data directionality, flows that started in the
center or left and, over time, moved to the right (Fig 9a and 9b) were distinguished from those
that progressed from the right to the left side of the plot (‘right-to-left’ flows, Fig 9c–9e).

Discussion and Conclusions
Data ambiguity is not rare: it is observed across species and syndromes, when infectious dis-
ease-related data are analyzed as simple (non-structured) variables. To prevent ambiguity-
related errors, spatial-temporal (4D) data interactions were evaluated. Findings revealed that
4D analysis may distinguish data subsets and prevent ambiguity.

and/or recorded over longer periods (a-d). For instance, observations recorded within three days (red arrow,
a) displayed a broader data range than observations collected over the following four months (blue oval, a).
Consequently, no numerical value of leukocyte data, per se, could distinguish recent from older or protracted
responses.

doi:10.1371/journal.pone.0159001.g002
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Fig 3. Multi-directional data ambiguity. Ambiguity was also expressed when temporal data directionality
was evaluated: arrows that connected pairs of consecutive observations displayed different temporal
directionality even when they exhibited similar numerical information (boxes, a-d). Such pattern indicated that
some dynamic changes took place at temporal scales smaller than the one utilized. Therefore, the 3D, single
line of data points defined by the L%, the phagocyte/lymphocyte (P/L) and the mononuclear cell/neutrophil
(MC/N) ratios failed to discriminate dynamics: some observations with similar numerical values, which
expressed different biological conditions, were not distinguished.

doi:10.1371/journal.pone.0159001.g003
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Methodological considerations
The detection of hidden data interactions (i.e., emergent patterns) demonstrated that 4D
approaches can extract more information than alternatives. Because validity is questionable
when hidden information is not ruled out, findings supported the validity of the combinatorial
approach [41, 42].

In addition, spatial-temporal relativity was documented [15]. Relativity was associated with
ambiguous (non-interpretable) data. When ambiguity occurs, numerical procedures, such as
statistical analyses and mathematical modeling, cannot be conducted [16]. Data ambiguity
-here observed in infections- has also been reported in neurology [16].

To prevent ambiguity, a method was designed to reduce noise, detect complexity, and cap-
ture anti-microbial immune dynamics (temporal changes). To reduce variability, the data were
structured as single (one data point-wide) lines of data points. This strategy was combined with
the analysis of complexity and temporal data directionality. Because no uni- or bi-dimensional
plot can reveal 3D/4D patterns, to detect complexity, the circularity of 3D data interactions was
assessed [9, 10, 31]. Arrows that expressed where each data point came from/went to measured
temporal data flows, even when they occurred within brief timeframes.

Fig 4. Canine leukocyte spatial-temporal relationships.When dimensionless indicators (DIs) were
utilized and three-dimensional (3D) patterns were considered, canine data revealed two (‘left’ and ‘right’)
subsets (a, b). Spatial data subsets exhibited non-overlapping lymphocyte percentages and N/L and M/L
ratios (c). When temporal data directionality was considered, arrows expressing different directionality (d)
increased discrimination: 4D (spatial-temporal) patterns distinguished five subsets (in addition to the first
observation) and non-overlapping N% differentiated the ‘right side/left-to-right flow’ observations from the first
one (horizontal lines indicate non-overlapping data subsets, e).

doi:10.1371/journal.pone.0159001.g004
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The use of arrows that connected pairs of consecutive observations met the definition pro-
posed by Nielsen and Jorgensen: ‘orientors’ are indicators that identify short-term, immediate
directionality (qualitative information) but lack long-term predictability [20]. Yet, the 4D
method exceeded such criteria: it analyzed qualitative and quantitative data.

In agreement with earlier reports, distinct patterns emerged when, over time, one indicator
changed in larger (or smaller) magnitudes than the remaining indicators [43]. Because the 4D
method demonstrated multi-directional data flows, the central assumption of reductionist
methods (the presence of only uni-directional flows) was rejected [22].

The impact of the 3D/4D combinatorial approach was summarized in the contrast shown
by Figs 2d, 8a and 8b: while the same data were analyzed with the same variables (and 3D
plots were used in both analyses), no discrimination (ambiguity) was revealed in Fig 2d, but

Fig 5. Human leukocyte spatial-temporal (MSSA/hip implant-related) relationships. Three data subsets
were identified when the MSSA/hip implant human case was explored with dimensionless indicators (a). All
data points associated with antibiotic therapy were clustered within one subset (green polygon, b), even
though antibiotics were administered in two non-consecutive periods (green boxes, b). The ‘vertical’ subset
exhibited statistically significantly higher M/L values than the ‘bottom, left’ subset (c). When arrows that
connected pairs of consecutive observations were assessed, three ‘bottom-up’ and two ‘top-down’
observations were detected (red and blue arrows, respectively, d). Changes in directionality were detected
within one day: at days 159/160, one ‘bottom-up’ data point was followed by one ‘top-down’ observation (d).
Spatial-temporal patterns (temporal data flows) differentiated four data subsets (e). The use of arrows
distinguished ‘vertical, bottom-up’ from ‘vertical, top-down’ observations (horizontal line, e).

doi:10.1371/journal.pone.0159001.g005
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Fig 6. Human leukocyte spatial-temporal (HIV/MRSA-related) relationships. Viral load values of the HIV+
patient were not informative: they exhibited more than 1000-fold changes among clinically stable observations
(arrows indicating green symbols, a). In contrast, dimensionless indicators (DIs) differentiated two spatial
(‘vertical’ and ‘horizontal’) subsets, which included twoMRSA isolations within the vertical subset (set I, b),
while all bacteria-negative data points were horizontally located (set II, b). A second set of DIs separated the
‘vertical’ data points into two sub-subsets: (i) the ‘top vertical’ and (ii) the ‘left horizontal’ groups, which did not
overlap with the remaining (‘right horizontal’) data points (c). At least the L% and the M/N ratio distinguished
the three spatial data subsets (d). More information was extracted when arrows that connected pairs of
consecutive observations were measured (e, f). The assessment of spatial-temporal data directionality
differentiated, twice, changes that took place within one day (days 118–119; and 135–136; arrows, e, f). While
the spatial (3D) analysis detected only two or three data subsets (b, c), the spatial-temporal (4D) assessment
distinguished five data subsets (g). For instance, the L%, M%, N/L, andM/N ratios differentiated ‘top vertical’
from the remaining observations (blue horizontal lines, g). The L% and N/L ratio also distinguished the ‘left/
top-down’ observation from the ‘left/bottom-up’ observations (green horizontal lines, g). Furthermore, the N/L
ratio discriminated the ‘right horizontal’ from the remaining subsets (red horizontal line, g). Some leukocyte
profiles were associated with antibiotic therapy, for instance, higher M/L values were observed after antibiotics
were prescribed, even after antibiotic therapy was discontinued (h).

doi:10.1371/journal.pone.0159001.g006
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distinct (and informative) patterns were conveyed by Fig 8a and 8b. The difference was due to
a double strategy, implemented in Fig 8a and 8b: (i) the construction and measurement of
interactions that involved two or more cell types (not isolated variables, such as the lympho-
cyte percent [measured in Fig 2d]), and (ii) the observation of perpendicular patterns–a proce-
dure that separates subsets that differ in one or more immunological function(s) and, given
their non-overlapping distributions, results in statistically significant differences (Fig 8b). This
means that statistical analysis should be conducted after (not before) data subsets are distin-
guished [9].

Fig 7. Longitudinal relationships in septic humans. Spatial patterns differentiated three data subsets
among 7 septic patients analyzed with dimensionless indicators: (i) a vertical subset, (ii) a right subset, and
(iii) the remaining observation, or ‘left’ subset (a). Higher M% and M/N ratio values distinguished the ‘right’
subset from the remaining data points, while higher L% and lower N/L ratio values differentiated the ‘left’ data
point from the remaining observations (horizontal lines, b). Discrimination further improved when temporal
and multidirectional data flows were assessed: several numerically similar observations displayed different
directionalities (c). While not all observations could be analyzed statistically because some patterns included
only one or two data point(s), the spatial-temporal analysis detected non-overlapping M% and M/N ratio
distributions that differentiated by the ‘right’ subset with a left-to-right directional flow from the ‘right’ subset
with a right-to-left flow (boxes, d). Non-numerical information (arrows) also distinguished ‘bottom/right-to-left’
from ‘bottom/left-to-right’ observations (boxes, d).

doi:10.1371/journal.pone.0159001.g007
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Clinical applications and extraction of new information
The 4D approach partitioned the data into subsets [44]. Applications include: (i) earlier detec-
tion of infection, (ii) identification of subsets that differ in immune profiles (pathogenesis-
based diagnostics), (iii) selection and evaluation of therapies, and (iv) prevention of ambiguity.

For instance, canine leukocyte patterns detected inflammation even when bacteriological
tests were negative (open circle with a cross embedded, Fig 4d). Such information enables clini-
cians to intervene and/or prognosticate, earlier.

Higher M/L values were observed in the MSSA recurrent infection, after antibiotics were
prescribed for the first time (Fig 5c). Such profile was consistent with reports that indicate
monocytes increase earlier (approximately 3 days after initiation of an immune response) than
lymphocytes [45]. However, because high M/L values were also observed after cessation of anti-
biotic treatments (in recurrent infections), the 4D method may also be used to explore topics of
major medical interest: antibiotic-immunological-bacterial-temporal interactions [46].

Fig 8. Spatial analysis of low-complexity indicators. Even in its simplest version–which did not utilize
dimensionless indicators–, the 4D method was more informative than the non-structured analysis reported in
Fig 1. When low-complexity indicators that measured interactions involving two or more cell types were
spatially analyzed (the phagocyte/lymphocyte [P/L], the mononuclear cell/neutrophil [MC/N], and the
neutrophil/lymphocyte [N/L] ratios), two subsets of septic patients-related data, perpendicular to one another,
were detected (a). The spatial analysis exhibited a single (one data point-wide) line of observations (a). When
leukocyte data were partitioned according to the spatial patterns, several comparisons reached statistical
significance ((b) and Table J in S1 File).

doi:10.1371/journal.pone.0159001.g008
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New (and in vivo) methods are needed to reduce lengthy procedures and other limitations
associated with in vitro perspectives. For example, antibiotic susceptibility tests cannot measure
tissue environmental conditions, such as hypoxia [47]. While classic methods have focused on
the microbe and used in vitro (or, when animal models are used, in vivo) approaches, such
methods are error-prone because they (i) do not assess poly-microbial infections, (ii) ignore
the fact that animal models do not truly represent human infection conditions, (iii) do not
account for differences across individuals, and (iv) do not measure immune dynamics [48–52].

Earlier and more informative methods are also needed to evaluate antibiotics [53, 54]. Such
new methods could consider (i) the predominant cell type(s) involved in some infections and
(ii) the fact that some antibiotics synergize with (or inhibit) specific cell types [55–58]. For
instance, immune responses against Salmonella species differ: those against typhoid fever-caus-
ing agents are monocyte-mediated, while responses against gastroenteritis-causing serovars are
neutrophil-mediated [58]. In Pseudomonas aeruginosa-related infections, amikacin is synergis-
tic with neutrophils but ciprofloxacin is not [59]. In spite of such reports, no method is

Fig 9. Spatial-temporal and personalized data analysis.When the leukocyte data of five septic patients
tested daily over three days were analyzed on personalized bases, several temporal patternswere observed
(the data of the two remaining septic patients were not analyzed because they were tested only two days). At
least two directionalities were differentiated: (i) data flows that came from the center or left and, over time,
moved to the right (‘from left-to-right’, a, b); and (ii) responses that followed the opposite directionality (c-e).
These responses were induced by: A. baumannii (a), E. faecalis (b), S. liquefaciens (c), and E. coli (d, e).

doi:10.1371/journal.pone.0159001.g009
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available to explore antibiotic-immunologic-microbial-temporal relationships with earlier, in
vivo inputs.

Changes in directional flows (observed even within a few hours) demonstrated earlier evalu-
ations of antibiotic therapy are feasible and data ambiguity may be prevented. For example, the
temporal flows of human leukocyte data demonstrated (three times) that antimicrobial inter-
ventions may interact not only with the microbe but also with the immune system (days
160–161 [hip implant/MSSA case, Fig 5d], and days 119–120 and 135–146 [HIV case, Fig 6e
and 6f]).

This evaluation–conducted as a part of a process aimed at exploring the properties of infec-
tious disease data–may, later, be implemented by clinicians that use a clinician-friendly soft-
ware package. While such a package has not yet been developed (and, therefore, this approach
is not ready for application in clinical settings), a simpler but informative approximation is
already feasible: when data points are located within the range characterized by high P/L and
N/L, as well as low MC/N values, an infection cannot be ruled out (red symbols, Fig 8a); in con-
trast, when observations exhibit high MC/N and low P/L and N/L values, recovery is likely
(blue symbols, Fig 8a). When such data subsets are perpendicular to one another, they tend to
differ at statistical significant levels, as shown here (Tables I, J in S1 File). When personalized
data are considered, the presence or absence of data inflections may support or modify earlier
decisions. For instance, when a data inflection is observed within one day, it may be suspected
that such change is not a random effect and, consequently, earlier (diagnostic- and/or treat-
ment-related) decisions may be defensible (Fig 9a). In contrast, when temporal data flows do
not change in directionality, it may be suspected that earlier decisions were not effective and,
consequently, they might be reevaluated (Fig 9e). When only a minor change in the data flow
is observed (Fig 9b), an additional test (conducted a few hours later) and/or pattern amplifica-
tion strategies (e.g., reducing the scale of the axis of interest) may improve data visualization.

While no data representation can replace clinical expertise, data visualizations that integrate
several leukocyte data combinations may facilitate earlier interpretations. When–after a ther-
apy is prescribed in response to a neutrophil-predominant profile, i. e., one characterized by a
high N/L value–a shift toward a mononuclear cell-predominant profile is observed, the hypoth-
esis that the infection is progressing toward recovery is supported. In contrast, when a neutro-
phil-predominant profile remains even after therapy, a revision of the earlier decision may be
considered. Because directionality-based analyses do not require population-based metrics, 4D
methods may apply to personalizedmedicine–where new methods are needed [18, 44].

The 4D analysis of infectious disease-related data properties–including dynamics and com-
plexity–can prevent ambiguity and foster data partitioning into subsets, facilitating earlier, per-
sonalized, explanatory (immunology-based) inferences. To further explore such properties,
prospective studies are recommended.
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(DOC)
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